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1 Preliminaries & Complexity Theory Speedrun

In previous lectures, we were interested in property testing: given a set of objects C, how
efficiently can we decide the contents of some subset P. The objects studied in complexity
theory are similar. The class of objects we study are binary strings over the “alphabet”
{0, 1}. We denote the set of all binary strings of arbitrary length as L = {0, 1}∗.

A language L ⊆ L is a set of strings. In the context of property testing, this can be
considered a property. Given a language L, the decision problem for L is given x ∈ L ,
decide if x ∈ L or x 6∈ L. We often think of the language L as the decision problem itself,
and will sometimes refer to L as a “problem”. If an algorithm A solves the decision problem
for L, that is A halts and outputs 1 (yes) when x ∈ L and 0 (no) when x 6∈ L, we say that
A decides L. We refer to a set of languages as a class. A particularly important class is the
class of languages decidable in polynomial time.

Definition 9.1 (The class P). A language L is contained in P if and only if there exists
a deterministic algorithm that decides L, which always halts in time poly(|x|), where x is
the input.

A difference between this (more standard) setting and property testing (which we have
been focusing in class) is that here we are always allowed to read the entire input, and then
perform our computations. Some examples of problems in P are

• Bipartiteness of a graph.

• Existence of an Eulerian path in a graph.

• Deciding if two vertices are connected in a graph.

Another important class is the class of problems verifiable in polynomial time.

Definition 9.2 (The class NP). A language L is in NP if there is a deterministic algorithm
V (x,w) and polynomials p and q such that

1. V (x,w) halts in time p(|x|+ |w|).

2. For all x ∈ L, there exists w ∈ L of length q(|x|) such that V (x,w) = 1.

3. For all x 6∈ L, each w ∈ L satisfies V (x,w) = 0.

We refer to V as a verifier for L and w as a witness for x ∈ L. Intuitively, a string x is
contained in L if and only if there a “short” string w that provides proof of x’s membership
in L which can be quickly verified by V . Some examples of languages in NP are

• 3-SAT (Given a boolean formula ϕ in conjunctive normal form, does ϕ have a satisfying
assignment?)
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• 3-Colorability of a graph (Given a graph G, can you label the nodes with a color in
{0,1,2} such that no two adjacent nodes have the same label?)

For a boolean formula ϕ, a witness for ϕ would be a satisfying assignment for the variables
in ϕ. For a graph G, a witness that G is 3-colorable is a 3-coloring of the graph G.

We also define the notion of a polynomial time reduction.

Definition 9.3 (Polytime reduction). Let LA, LB ⊆ L . We say LA reduces to LB, written
as LA ≤p LB, if and only if there exists a polytime computable function f : L → L such
that a ∈ LA if and only if f(a) ∈ LB.

Reductions are meant to capture the idea of how hard a problem is relative to another
problem. The intuition is that if LA ≤ LB, then LB is in some sense “harder” than LA as
any algorithm solving LB implies an algorithm solving LA.

Definition 9.4 (NP-Hard). L ⊆ L is NP-hard if for all A ∈ NP, A ≤P L.

That is L is NP-hard if it is at least as difficult to solve as all other problems in NP.
A NP-hard problem need not be contained in NP. 1

Definition 9.5 (NP-complete). L is NP-complete if L ∈ NP ∩NP-hard.

Proposition 9.6 (P ⊆ NP). Proof. If L ∈ P, then some deterministic algorithm A de-
cides L in polynomial time. A is then a polynomial time verifier for L where the witness
for each x ∈ L is ε, the empty string.

The million dollar question: NP ⊆ P? The question of P
?
= NP is essentially

asking if finding a witness is as easy as verifying it.

1.1 NP languages as theorems with proofs.

Given L ∈ NP:

• Interpret the instance x ∈ {0, 1}∗ as the (potentially false) theorem statement x ∈ L.

• For all x ∈ L, there exists a proof w (of length polynomial in |x|) such that V (x,w) =
1.

• For all x 6∈ L, no such proof exists.

This is not necessarily a different definition of NP, but rather a different framing. For
example, in this context 3-colorability may be understood as

Theorem: “the input graph G is 3-colorable.”
Proof : “A proper 3-coloring of G”
In our previous framework of linear versus sublinear algorithms, this type of proof system

could be considered a linear algorithm. To decide if a proof w for an instance x is valid, we
must read all of w and all of x to decide if w indeed proves x.

The notion of probabilistically checkable proofs is a surprising result showing that we
can in fact verify proofs sublinearly.

1For example, it is quite easy to show that the Halting problem is NP-hard, but clearly not in NP.
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2 Probabilistically checkable proofs

Definition 9.7 (PCPc,s[r, q]).
2 The complexity class PCPc,s[r, q] consists of languages L

with a non-adaptive, randomized poly-time verifier V (x, π) satisfying

1. If x ∈ L, there exists a poly-sized π such that P (V (x, π) = 1) ≥ c.

2. If x 6∈ L, P (V (x, π) = 0) ≤ s for every “potential proof” π.

3. V uses at most r(|x|) bits of randomness.

4. V makes at most q(|x|) non-adaptive queries into π.

We think of the constant c, our completeness variable as close to one, and the constant s,
our soundness variable, as close(ish) to zero. r is a function (not necessarily a polynomial!!)
that determines the number of random bits V is allowed to use (how many times are we
allowed to flip coins) and q represents the query complexity of V with respect to π.

Definition 9.8 (Canonical PCP settings). By convention, we set

• PCP[r, q] = PCP1, 1
2
[r, q]

• PCP = PCP[O(log(n), O(1)]

Proposition 9.9 (PCP ⊆ NP). Proof. Let L ∈ PCP. For each x ∈ L, there exists a PCP
proof π for x. We will use π as our NP witness for x. As the PCP verifier VPCP(x, π)
uses at most O(log(|x|)) random bits, we may construct a deterministic verifier VNP(x, π)
by enumerating all of the 2O(log(|x|) = poly(|x|) possible random bit strings and running
VPCP(x, π) on each fixed bit string. VNP accepts if all of the runs of VPCP accept.

Theorem 9.10 (PCP theorem). NP ⊆ PCP. That is, every L ∈ NP has a probabilisti-
cally checkable proof.

The proof of this theorem is quite long - so we omit it. The reason the PCP theorem
is so surprising (and beautiful) is that it tells us that for every x ∈ L, the witness w (which
required linear time to check) may be encoded into a PCP proof π (still of length poly(|x|)
but longer) for which it only takes a constant number of (random non-adaptive) queries
to verify. In principle, this constant could be huge, resulting in impractical PCP systems.
Absolutely horrible! However, with some slight relaxations, we only need three queries to
verify a proof.

Theorem 9.11 (H̊astad’s 3-bit PCP). For any ε, δ > 0, NP = PCP1−ε, 1
2

+δ[O(log n), 3].

2The astute reader may recognize that PCP could also be an abbreviation for Phenylcyclohexyl Piperidine,
a recreational dissociative drug. According to Muli Safra, a researcher who participated in proving one of the
first versions of the PCP theorem, the name commemorates an incident in which a police force mistakenly
suspected that Safra and his friends were running a PCP lab. Safra thought that the least they could do
after being falsely accused is to actually run a PCP lab (albeit of a different nature).
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3 PCP ⇐⇒ Gap/Inapproximability.

We have seen that PCPs can be used to verify membership in a language in sublinear time.
In this section, we see how the PCP theorem has a surprising (and strong!) connection to
approximation algorithms and approximability of optimization problems.

Definition 9.12 (Constraint). Given:

• A set of variables V = {v1, . . . , vn}.

• A finite set of values Σ, called an alphabet.

A q−ary constraint is a tuple (C ⊆ σq, i1, . . . , iq), where i1, . . . , iq denotes the variables we
are interested in constraining, and C denotes the set of acceptable values of variables. An
assignment a : V → Σ satisfies the constraint if (a(vi1), . . . , a(viq)) ∈ C.

Definition 9.13 (q-CSP). An instance x, is a triple (V,Σ, C) such that C only contains
constraints which are q-ary. Problem: Given x, decide if x is satisfiable or not.

Proposition 9.14. For q ≥ 2, q-CSP is NP complete.

Proof. (Sketch) We can phrase the NP-hard problem 3-colorability in terms of q-CSP,
showing that q-CSP is NP-hard itself. To see that q-CSP is contained in NP, verifying if
an assignment satisfies x amounts to a polynomial amount of computation.

Example (3-Colorability as a CSP). Given G = (V,E), our variables are the vertices V ,
our alphabet is Σ = {0, 1, 2} and our constraints C is the edge set E.

Given a constraint set C, it may or may not be satisfiable. We would like a measure
(and a reasonable one at that) of just how satisfiable (or not) a particular set of constraints
is.

Definition 9.15 (UNSAT). Given a constraint set C (technically a instance of CSP x =
(V,Σ, C)), we define

UNSAT(C) = min
a:V→Σ

fraction of constraints violated by a.

Clearly, C is satisfiable if and only if UNSAT(C) = 0. Further, if C is unsatisfiable then
UNSAT(C) ≥ 1

|C| .

Proposition 9.16. Given q-CSP x = (V,Σ, C), is is NP-hard to decide if UNSAT(C) = 0
versus UNSAT(C) ≥ 1

|C| .

In some sense, this result is not extremely surprising, as it makes sense that such a small
gap is hard to detect. However, as it turns out even large gaps are hard to differentiate.

Theorem 9.17 (The PCP theorem, again). For some q ≥ 2, |Σ| > 1, it is NP-hard to
decide

UNSAT(C) = 0 versus UNSAT(C) ≥ 1

2

We refer to this instance of q-CSP as GAP-q-CSP, where we are promised that either
the UNSAT value is 0 or it is at least 1/2. What does this have to do with approximation
algorithms? To see this, we view a q-CSP instance as an optimization problem rather than
a satisfiability problem: Given a q-CSP x, maximize the number of constraints satisfied.
Theorem 9.17 then implies that it is NP-hard to approximate the optimization problem to
within a factor of 2!!
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Lemma 9.18 (Theorem 9.10 is equivalent to Theorem 9.17). Proof. We begin by showing
that Theorem 9.10 implies Theorem 9.17. Consider any L ∈ NP. We want to show L ≤P
GAP-q-CSP. By Theorem 9.10, L ∈ PCP, so there exists a non-adaptive verifier V (x, π) for
L. We may modify V into a deterministic verifier V (x, π, rand) which accepts an O(log(n))
bits of randomness instead of flipping coins itself. Furthermore, the query complexity of V
is a constant q. We construct a new q-CSP instance (V,Σ, C) defined as

• V = {1, 2, . . . , |π|}

• Σ = {0, 1} (Our PCPs are binary strings)

• We construct our constraint set C via the following procedure: for each of the poly(|x|)
many internal random strings, obtain q queried locations. Add the constraint “V
accepts the queries”.

The fraction of strings the verifier will reject if x is not in the language is at least 1
2 since

PCP requires at least 1
2 rejection probability. Therefore, for any ` 6∈ L, the induced CSP

has UNSAT of at least 1
2 .

To show the converse, assume Theorem 9.17. We will show that every language L ∈ NP
has a PCP system. Fix L ∈ NP. Since GAP-q-CSP is NP hard, we can map x ∈ {0, 1}∗ to
a q-CSP instance χ = (V,Σ, C). To construct the PCP system, consider the proof π being
an assignment to V. The verifier V will randomly choose c ∈ C and check that it is satisfied
by making q queries. If x ∈ L, then we will always be able to satisfy c. Otherwise, we will
accept with probability at most UNSAT(C).
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